Consensus Statement

Return to sport soccer after anterior cruciate ligament reconstruction: ISAKOS consensus

David Figueroa, MD a,*, Guillermo Arce, MD b, João Espregueira-Mendes, MD, PhD c, Rodrigo Maestu, MD d, Manuel Mosquera, MD e, Andy Williams, MD f, David Parker g, Moises Cohen, MD h, Mustafa Karahan, MD i, Germán A. Ochoa Perea, MD j, Stefano Zaffagnini, MD k, Philippe Neyret l, Jon Karlsson, MD, PhD m, Volker Musahl, MD n, Fernando Radice, MD o, Willem M. van der Merwe p, Philippe Landreau, MD q, Andreas Imhoff, MD r, Jacques Menetrey, MD s, Olufemi R. Ayeni, MD t, Gustavo G. Arliani, MD u, Seth L. Sherman, MD v, Joan C. Monllau, MD w, Pieter D’Hooghe, MD x, Leo Pinczewski, MD y, Julian Feller, MD, FRACS, FAOrthAz a, Sartha Patnaik, MD aa

a Facultad de Medicina Universidad del Desarrollo-Clinica Alemana, Santiago, Chile
b Instituto Argentino de Diagnóstico y Tratamiento. Buenos Aires, Argentina
c Orthopaedic Department of Minho University, Portugal
d Buenos Aires, Argentina
e Clínica la Carolina Bogotá, Colombia
f Fortia Clinic, London, UK
 g Sydney Orthopaedic Research Institute Sydney, Australia
h Orthopedics and Sports Medicine Department of the Federal University of São Paulo- Brazil
i Acióbadem Mehmet Ali Aydınlı University, Istanbul, Turkey
j Centro Médico Imbanaco, Clínica Sebastián de Belalcazar, Cali Colombia
k Ortopedia e Traumatologia - Università di Bologna Direttore (Head) II Clinica Ortopedica e Traumatologica e Centro di Riferimento Traumat. dello Sport (Sports Traumatology Centre) Istituto Ortopedico Rizzoli - Bologna – Italy
l Reem Hospital Abu Dhabi, United Arab Emirates
m Orthopaedics and Sports Medicine Department of the Federal University of São Paulo- Brazil
n Blue Cross of Western Pennsylvania Professor and Chief Sports Medicine University of Pittsburgh UPMC Prendie Fu Sports Medicine Center, USA
o Orthopaedic Surgeon Knee & Sports Medicine, Director of Orthopaedic Surgery, Department Clínica Universidad de las Andes, Chile
p ISAKOS Past President, Cape Town, South Africa
q Consultant Orthopaedic Surgeon Knee, Shoulder and Sports Surgery Orthocure & Mediclinic Dubai, United Arab Emirates
r University Professor emer, Orthopaedic Surgery and Traumatology, Techn, University of Munich. (TUM), Germany
s Directeur Swiss Olympic Medical Center, Switzerland
t Canada Research Chair in Joint Preservation Surgery Academic Head and Professor Division of Orthopaedic Surgery, McMaster University Canada
u Department of Orthopaedics and Sports Medicine Federal University of São Paulo Brazil
v Stanford Medicine, USA
w Parc de Salut Mar Head of the Knee Unit (ICATknee), ICATME, Hospital Universitari Dexeus Universitat Autònoma de Barcelona (UAB), Spain
x Aspetar Orthopaedic and Sports Medicine Hospital in Doha, Qatar
y North Sydney Orthopaedic and Sports Medicine Centre Sydney, Australia
z OrthoSport Victoria, Epworth Richmond Melbourne, Australia
aa Kendujhar, Odisha, India

ARTICLE INFO

Keywords:
Anterior cruciate ligament reconstruction
Return to pivoting sports
Soccer

ABSTRACT

Introduction: Many factors can affect the return to pivoting sports, after an Anterior Cruciate Ligament Reconstruction. Prehabilitation, rehabilitation, surgical and psychological aspects play an essential role in the decision to return to sports. The purpose of this study is to reach an international consensus about the best conditions for returning to sports in soccer—one of the most demanding level I pivoting sports after anterior cruciate ligament (ACL) reconstruction.

* Corresponding author.
E-mail address: dhfigueroa@gmail.com (D. Figueroa).

https://doi.org/10.1016/j.jisako.2022.08.004
Received 9 July 2022; Accepted 7 August 2022
Available online xxxx
2059-7754/© 2022 The Authors. Published by Elsevier Inc. on behalf of International Society of Arthroscopy, Knee Surgery and Orthopedic Sports Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: Figueroa D et al., Return to sport soccer after anterior cruciate ligament reconstruction: ISAKOS consensus, Journal of ISAKOS, https://doi.org/10.1016/j.jisako.2022.08.004
Methods: 34 international experts in the management of ACL injuries, representing all the continents, convened and participated in a process based on the Delphi method to achieve a consensus. 37 statements related to ACL reconstruction were reviewed by the experts in three rounds of surveys in complete anonymity. The statements were prepared by the working group based on previous literature or systematic reviews. Rating agreement through a Likert Scale: strongly agree, agree, neither agree or disagree, disagree and strongly disagree was used. To define consensus, it was established that the assertions should achieve a 75% of agreement or disagreement.

Results: Of the 37 statements, 10 achieved unanimous consensus, 18 non-unanimous consensus and 9 did not achieve consensus. In the pre-operative, the correction of the range of motion deficit, the previous high level of participation in sports and a better knowledge of the injury by the patient and compliance to participate in rehabilitation were the statements that reached unanimous consensus. During the surgery, the treatment of associated injuries, as well as the use of autografts, and the addition of a lateral extra-articular tenodesis in some particular cases (active young athletes, < 25 years old, hyperlaxity, high rotatory laxity and revision cases) obtained also 100% consensus.

In the postoperative period, psychological readiness and its validation with scales, adequate physical preparation, as well as not basing the RTS purely on the time of evolution after surgery, were the factors that reached unanimous Consensus.

Conclusions: The consensus statements derived from this international ISAKOS leaders, may assist clinicians in deciding when to return to sports after ACLR. Those statements that reached 100% consensus have to be strongly considered in the final decision to RTS soccer.

What are the new findings

- Return to sport soccer after anterior cruciate ligament reconstruction must be based considering multifactorial variables that can play a role in the pre op, surgery and post operative stages of this process.
- In the pre-operative phase, the panel of experts reached unanimous consensus in the correction of the ROM deficit, the previous high level of participation in sports and a better knowledge of the injury by the patient and compliance to participate in rehabilitation, as relevant factors in the decision to return to sports.
- During the surgical procedure, the treatment of associated injuries, as well as the use of autografts, and the addition of a lateral extra-articular tenodesis in some particular cases (active young athletes, < 25 years old, hyperlaxity, high rotatory laxity and revision cases) reached the unanimous consensus and could be associated with a higher return to sports.
- In the post-operative phase, the psychological readiness and its validation with scales, adequate physical preparation, as well as not basing the RTSS purely on the time of evolution after surgery are the factors that reached unanimous Consensus and could be relevant in the final decision to return to sport soccer, after ACLR reconstruction.

Introduction

Anterior cruciate ligament reconstruction (ACLR) is considered the gold standard treatment for active patients with an ACL injury. Several factors may affect the outcome of ACL reconstruction surgery, including surgical-related factors and pre- and post-operative rehabilitation factors [1,2,65,91]. Between others, early ACLR increases the incidence of developing joint stiffness; however, delayed ACLR decreases muscle strength and increases the incidence of additional injuries [3,4]. Psychological aspects also play an essential role and fear of re-injury was the most frequent cause of not returning to sports (RTS) in some patients [5,12].

Evidence suggests a role of a multimodal algorithmic approach that factors in time, graft biology and functional testing in return-to-play decision-making after ACLR [6,36,65]. Various objective criteria have been used to help clinicians to decide when athletes are ready for RTS. A systematic review [7] has questioned the ability of currently available tests to evaluate the return to sports (RTS), showing high variability in defining, assessing, interpreting and reporting RTS following ACLR.

There is limited evidence in the literature regarding the return to specific sports at specific activity levels. Seto et al. reported that athletes, who participated in pivoting sports, were less successful in returning to preinjury activity level after ACLR [8]. Other authors suggest that competitive athletes return to preinjury level of activity and sport-related function more quickly and successfully than non-athletes. A widely accepted guideline is that return to full activity should not be permitted until six months postoperatively; however, a range of 4.1–8.1 months for RTS has been reported [9].

Football (soccer) is a sport where the player faces many challenges when returning to competition following an ACLR. Soccer involves many cuttings and twisting motions, putting the player at risk of a second ACL injury. The soccer player usually must deal with high pressure of his entourage (club, coach) and the risk of jeopardizing his career, while pursuing the goal of a successful RTS. Physiotherapists play an essential role in monitoring a closely supervised criteria-based program and in guiding the athlete during the rehabilitation and training process [10,11].

The literature is not consistent in recommending some agreement in return to sports soccer after an ACLR. This study aims to reach an international consensus about the best conditions for returning to sports in soccer (RTSS), one of the most demanding level I pivoting sports after ACLR.

Methods

This consensus was performed based on the Delphi method which allows structuring a communication process of experts organized in a group-panel to shed light on a research problem [12, 93]. An international working group was created (4 experts) with a facilitator who prepared a list of statements. A questionnaire of 37 statements related to ACLR was applied to orthopedic knee surgeons experts in the subject. The questions were divided into:

(A) Preoperative factors that could affect RTSS (9 questions)
(B) Operative factors that could affect RTSS (9 questions)
(C) Postoperative factors that could affect RTSS (19 questions)

The expert panel answered three rounds of surveys in anonymity. The first round allowed respondents to include comments and rating agreement through a Likert Scale: strongly agree, agree, neither agree or disagree, disagree and strongly disagree.

Consensus was defined when the assertions achieved a 75% of agreement. Cohen’s Kappa index was used to indicate stability between the second and third rounds [94].

The expert panel was formed based on a nominative process to recognize the relevant experts in the research topic either because of their knowledge and experience, together with their willingness to participate. The selection criteria and composition of the panel are shown in Fig. 1.
Fig. 1. Show the selection criteria and composition of the panel of experts, and the sequence of work.
Results

Of the 37 statements discussed by this working group, 28 achieved consensus, 10 unanimous and 18 non-unanimous and 9 did not achieve consensus (in statements #15 and #24 there was an almost consensus against the statements) (Tables 1–3).

The 37 finalized statements (third round), with supporting literature, are as follows.

Preoperative factors that could affect RTS in soccer

1. “Time of surgery (more than three months after the injury) is one of the factors that should be considered in affecting RTS in soccer”: Consensus 76.9%

Many studies favour that waiting some time (up to 3 months) before reconstruction, improve the functional results, with better clinical scores in the postoperative period [9,10,75]. Shelbourne et al. [66] have concluded in an increase in arthrofibrosis in patients who had undergone ACLR within the first week of injury [63, 64,66]; however, other studies have not found significant differences in knee range of motion (ROM) between patients who underwent early reconstruction versus those who waited at least 6 weeks [68].

Conclusion: Moderate consensus. The decision of when to undergo ACLR is likely multifactorial. The optimal timing of ACLR is an essential clinical decision that affects patient outcomes and RTS soccer significantly. But Timing of surgical intervention may only be one factor that should be considered when determining the optimal timing of surgery.

2. “Wait for about three weeks to allow resolve symptoms related to inflammatory and proliferative phases. After that period, we can proceed with the ACLR, and it will not influence the RTS in soccer”: Consensus 80.8%

Waiting for the resolution of the inflammatory process before proceeding with the surgery is a factor that can influence better outcomes [13] as there is a strong association between preoperative irritation of the knee and arthrofibrosis [14]. With the appearance of arthrofibrosis, the RTS activities may be delayed and impaired [15]. Interestingly, those individuals who underwent surgery after 4 weeks with an irritated knee had a similar chance of developing arthrofibrosis as those who went through surgery after an earlier reconstruction [67].

Conclusion: High consensus. More important than time alone, objective criteria about the inflammatory phase of the knee preoperative including perioperative swelling, oedema, hyperthermia and ROM are important indicators of when surgery should be performed.

3. “Preoperative ROM deficit (less than full extension, and or less than 90° of flexion) should be corrected before surgery as it can affect the RTS in soccer”: Consensus 100%

Some studies conclude that the preoperative ROM deficit results in worse functional results at one year after ACLR [16,75] and could be a predictor of reduced postoperative ROM, and that symmetrical full ROM can be achieved preoperatively and has been shown to reduce the risk of arthrofibrosis improving the outcomes postoperatively [19, 69–71].

Conclusion: Consensus 100%. An important indicator of patient readiness for surgery is the achievement of full symmetrical ROM before undergoing ACLR.

4. “Quadriceps’ strength should be evaluated and improved before surgery as can affect the RTS in soccer”: Consensus 65.4%

Preoperative training provides a significant positive impact on functional performance of the knee, with muscle control exercises and muscle co-contraction with particular attention to the quadriceps providing higher rates of RTS and a trend towards a shorter time to the RTS [17–20, 73]. Eitzen [72] suggest that ACLR should not be performed before quadriceps muscle strength deficits of the injured limb is less than 20% of the uninjured limb.

Conclusion: No consensus. Although the literature supports the fact that quadriceps strength should be evaluated and restored before ACLR, our expert panel did not agree with this statement.

5. “In patients who still have pain and effusion, delayed surgery should be considered because it can affect RTS in soccer”: Consensus 96.2%

Recent literature shows the association between poor patient outcomes with significant inflammatory phenomena before surgery [18,21, 73]. Eitzen et al. [18] showed that 3.9% of the patients presented symptoms such as swelling and pain during or after pre-rehabilitation associating magnetic resonance images due to suspicion of other intra-articular pathologies such as a meniscus tear, which should be adequately evaluated before reconstruction surgery.

Conclusion: High consensus. The knee status before surgery may be a more critical factor than injury-to-surgery interval in determining the optimal timing of reconstruction.

6. “RTS in soccer is associated with a high level of preoperative sports participation”: Consensus 100%
Table 1
Statements that achieve consensus (75% agree or disagree) at the end of the third round. Descending percentage order.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Percentage of consensus in the agree position</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3. Preoperative ROM deficit (less than full extension, and or less than 90° of flexion) should be corrected before surgery as it can affect the RTSS</td>
<td>100.0%</td>
</tr>
<tr>
<td>P6. RTSS is associated with a high level of preoperative sports participation.</td>
<td>100.0%</td>
</tr>
<tr>
<td>P7. A better understanding of the injury, surgery and the importance of subsequent rehabilitation and compliance of the patient with this Rh, is one of the most critical factors that can affect the RTSS.</td>
<td>100.0%</td>
</tr>
<tr>
<td>P13. Allografts allow faster immediate postoperative recovery and less operative pain BUT delayed incorporation/remodelling and display higher graft failure rates.</td>
<td>100.0%</td>
</tr>
<tr>
<td>P16. Carriage and meniscal associated injuries, should be managed concomitantly with ACL reconstruction as these can be essential in the making decision to RTSS.</td>
<td>100.0%</td>
</tr>
<tr>
<td>P17. Autografts are more successful in RTSS and have less failure rates compared with allografts, especially in active young athletes.</td>
<td>100.0%</td>
</tr>
<tr>
<td>P27. In additional to physical readiness, the athlete's psychological state is crucial for RTSS timing and outcomes, so a Psychological validate scale should be used as an essential tool to make the correct decision for RTSS.</td>
<td>100.0%</td>
</tr>
<tr>
<td>P31. Purely Time-based RTSS should not be used as a single and definitive factor to decide readiness parameter in RTSS.</td>
<td>100.0%</td>
</tr>
<tr>
<td>P35. Psychological readiness for RTSS is essential after ACLR since this is a predictor for returning to the pre-injury level and secondary ACL injuries of the sport in amateur athletes.</td>
<td>100.0%</td>
</tr>
<tr>
<td>P5. In patients who still have pain and effusion, delayed surgery should be considered because it can affect RTSS.</td>
<td>96.2%</td>
</tr>
<tr>
<td>P19. RTSS should be based on the participation of the patient in a complete rehabilitation program with objective goal-based progressions and objective criteria to discharge to sports participation, known to the patient, as a minimum requirement.</td>
<td>96.2%</td>
</tr>
<tr>
<td>P21. RTSS decision-making must include objective physical examination data as anterior drawer test, Lachman test, pivot shift test, ROM, effusion, pain, dial test, among others.</td>
<td>96.2%</td>
</tr>
<tr>
<td>P22. Before RTSS, patients should pass a standardized, validated, objective analysis. These include isokinetic testing (strength symmetry evaluation), and hop tests (movement quantity and quality evaluation). When determining a safe RTPS, test results should demonstrate a Limb Symmetry Index (LSI) of 90%–100%, which is recommended to reduce the recurrence of injury and possible long-term complications.</td>
<td>96.2%</td>
</tr>
<tr>
<td>P26. RTSS should involve the assessment of specific functional skills that demonstrate the appropriate physical performance such as quality of movement, strength, ROM, balance and neuromuscular control of the lower extremity and body.</td>
<td>96.2%</td>
</tr>
<tr>
<td>P32. Other important factor for RTSS is the quality of movement. Using solely the LSI can mask kinematic deficits (movement quality)°</td>
<td>92.3%</td>
</tr>
<tr>
<td>P8. An essential element during the preoperative period for RTSS is the completion of a rehabilitation program (pre-habilitation). The goals of a pre-habilitation program include reducing inflammation, swelling and pain, restoring normal range of motion (ROM), strength, neuromuscular control and gait.</td>
<td>92.3%</td>
</tr>
<tr>
<td>P18. In Young patients (~25 years old), hyperlaxity, high rotatory laxity and revision cases, we may consider adding an extra-articular lateral tenodesis to the ACL reconstruction in order to a better RTSS.</td>
<td>92.3%</td>
</tr>
<tr>
<td>P29. Even though, as a doctor, one might be satisfied with the outcome of treatment (adequate graft placement and fixation, symmetric strength, excellent agility, the patient is back to playing his sport), the patient might still have a different perspective regarding a successful outcome. Therefore, self-personal satisfaction tests should be applied before RTSS.</td>
<td>92.3%</td>
</tr>
<tr>
<td>P29. RTSS should include a questionnaire of the patient's symptoms as pain, swelling, instability, giving way, locking sensation, stiffness among others.</td>
<td>88.5%</td>
</tr>
<tr>
<td>P34. Most of the current test batteries can be used to determine the likelihood that patients resume RTSS at pre-injury level, but fail in identifying patients who are at risk for a second ACL injury.</td>
<td>88.5%</td>
</tr>
<tr>
<td>P37. All parameters used for a safe RTSS will also act as preventive measures for a new ACL injury</td>
<td>88.5%</td>
</tr>
<tr>
<td>P28. Patient's age should be considered as an important factor in the decision making for RTSS.</td>
<td>88.5%</td>
</tr>
<tr>
<td>P12. For the elite athlete who demands the highest level of stability and function, it may be beneficial to receive an anatomic reconstruction, which will more closely recreate the pre-injury function of their knee, so an Anatomical placement of the graft should be privileged if we want a better RTSS.</td>
<td>84.6%</td>
</tr>
<tr>
<td>P33. Increasing the quality of the ACLR rehabilitation by implementing more aggressive strength training results in higher passing rates for RTSS strength criteria, which potentially increase RTSS rates and decrease the risk for second ACL injury.</td>
<td>84.6%</td>
</tr>
<tr>
<td>P2. Wait for about three weeks to allow resolve symptoms related to inflammatory and proliferative phases. After that period, we can proceed with the ACLR, and it will not influence the RTSS.</td>
<td>80.8%</td>
</tr>
<tr>
<td>P36. Using patient-reported-outcomes as IKDC form, and Tegner activity rating scale, give us a reliable and valid measure of patient-reported function in the making decision to RTSS.</td>
<td>80.8%</td>
</tr>
<tr>
<td>P1. Time of surgery (more than 3 months after the injury) is one of the factors that should be considered in affecting RTSS.</td>
<td>76.9%</td>
</tr>
<tr>
<td>P30. At this time, using MRI to investigate graft healing is promising; however, it has not been validated to ensure graft maturity and biomechanical strength. MRI decisively should not be used as an isolated parameter for deciding the RTSS.</td>
<td>76.9%</td>
</tr>
</tbody>
</table>

Table 2
Statements that do not reach consensus (75% agree or disagree) at the end of the third round.

<table>
<thead>
<tr>
<th>Statements</th>
<th>Percentage of consensus in the agree position</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4. Quadriceps' strength should be evaluated and improved before surgery as can affect the RTSS</td>
<td>65.4%</td>
</tr>
<tr>
<td>P9. Evaluate the EPIC (estimated pre injury capacity) could be a beneficial tool in this phase in order to a better RTSS.</td>
<td>69.2%</td>
</tr>
<tr>
<td>P10. Graft choice is one of the most important factors that can affect the RTSS.</td>
<td>69.2%</td>
</tr>
<tr>
<td>P11. In patients with a high level of intensity of pivoting sports practice, BTB should be the favourite graft as an earlier graft ligamentization allows the implementation of a more aggressive rehabilitation program after surgery, and therefore, a faster RTSS.</td>
<td>69.2%</td>
</tr>
<tr>
<td>P14. Ideally, proper tension should avoid the laxity caused by the insufficient ligament, without causing over constriction that may lead to increased joint contact pressures and resultant in collagen myxoid degeneration and intrasubstance graft necrosis. Hence, graft tension at the end of the surgery is one of the factors that can affect the RTSS.</td>
<td>65.4%</td>
</tr>
<tr>
<td>P15. Enhance the biological ligamentization process during the surgery, should be fundamental in improving RTSS.</td>
<td>23.1%</td>
</tr>
<tr>
<td>P23. The hop test battery should always include single-leg hop, triple hop, crossover hop and single-leg vertical hop</td>
<td>73.1%</td>
</tr>
<tr>
<td>P24. The single-leg vertical hop test has been the most recommended for use in functional performance hop test batteries because of its value in discriminating between healthy versus ACL-injured limbs according to previous literature.</td>
<td>19.2%</td>
</tr>
<tr>
<td>P25. Isokinetic quadriceps strength test should be performed with 3 submaximal (i.e. 50% effort) practice knee extension contractions being more reliable at a rate of 60 deg/s before attempting the maximal effort trials.</td>
<td>65.4%</td>
</tr>
</tbody>
</table>
A meta-analysis including 57 studies to assess the level of preoperatively sports participation has found that elite athletes were more likely to return to any type of sport [22]. However, those returning to level I sports after ACL injury have a 4.32 to 18.40 times higher reinjury rate. The 2-year reinjury risk in patients who returned to level I sports after ACL surgery was 29.7% (22 of 74) [23]. Operative factors that could affect RTS in soccer

A recent retrospective cohort study [27] demonstrated that EPIC levels could predict secondary injury compared to postoperative limb symmetry index (LSI; commonly used to determine RTS timing). Another prospective cohort study [28] found that 6 of 8 patients with 90% postoperative LSI and EPIC levels <90% after ACL reconstruction suffered secondary ACL injury. They concluded that the LSI could be overestimating the function of the knee, being the levels of EPIC more sensitive than the LSI in the prediction of secondary injuries.

Identification of the barriers and facilitators of adherence and participation in ACL rehabilitation programs, provides an opportunity to address personal, environmental, and treatment-related factors, increasing the likelihood of patients complying with current best evidence rehabilitation to improve outcomes such as return to sport rates.

Operative factors that could affect RTS in soccer

10. “Graft choice is one of the most important factors that could affect the RTS in soccer” No consensus 69.2%

One systematic review [77] demonstrated that ACLR using bone-patellar-tendon-bone (BPTB) autografts showed higher overall RTS rates when compared with hamstring (HT) autografts. However, BPTB and HT autografts had similar rates of return to pre-injury levels of performance and re-rupture rates. Less than half of the athletes returned to preinjury status after ACLR with either an HT or BPTB autograft. However, when using allografts, the clinician must be aware that there is a higher risk of failure during the first nine months after reconstruction [23].

Conclusion: No consensus. Graft choice was not considered as one of the most critical factors in RTS in soccer.

11. “In patients with a high level of intensity of pivoting sports practice, BPTB should be the favourite graft as an earlier graft ligamentization allows the implementation of a more aggressive rehabilitation program after surgery, and therefore a faster RTS in soccer” No consensus 69.2%

BPTB autografts have been considered to have lower revision rates and higher postoperative stability than HT autografts and may be preferable in competitive high-level athletes in contact sports [77]. Xie [78] suggested that BPTB autografts should be used in young and high-demand athletes to enable a greater proportion of patients to return to their preinjury sport postoperatively with higher levels of activity, but despite it provides better initial fixation and allows an early return, has
been associated with different morbidities, such as anterior knee pain and loss of ROM, and longer time to reach the Rh progression milestone than HS [29].

Conclusion: No consensus. BPTB should not be prioritized in patients with high demand in pivoting sports allowing a faster RTS in sports.

12. “For the elite athlete who demands the highest level of stability and function, it may be beneficial to receive an anatomic reconstruction, which will more closely recreate the pre-injury function of their knee, so an anatomical placement of the graft should be privileged if we want a better RTS in soccer” **Consensus: 84.6%**

For the elite athlete who demands the highest level of stability and function, has been described that more closely recreating the pre-injury function of their knee through anatomical reconstruction results in increased in situ graft loading, reproducing native kinematics potentially avoiding the development and progression of post-traumatic osteoarthritis. However, there is always a risk of a new knee lesion [1,23].

Conclusion: High consensus. Anatomic reconstruction of the torn ACL could be an important factor in RTS.

13. “Allografts allow faster immediate postoperative recovery and less operative pain but delayed incorporation/remodeling and display higher graft failure rates” **Consensus: 100%**

Many studies have associated allografts with less anterior pain of the knee and morbidity [1,35,74,79]. However, ligamentization and allograft incorporation are slower and presumably more susceptible to early failure [30]. A systematic review [79] concluded that although no substantial difference in patient-reported function, activity level, and symptoms, the findings highlighted a greater risk for graft failure or revision that may make allograft a less safe treatment modality in ACL reconstruction.

Conclusion: Consensus 100%. The use of allografts should be restricted in high demand and pivoting sports because due to associated higher rates of failure.

14. “Ideally, proper tension should avoid the laxity caused by the insufficient ligament, without causing over-constriction that may lead to increased joint contact pressures and resultant in collagen myxoid degeneration and intrasubstance graft necrosis. Hence, graft tension at the end of the surgery is one of the factors that could affect the RTS in soccer” **No consensus 65.4%**

Adequate graft tensioning may be important for restoring normal anteroposterior laxity in ACL reconstruction at the time of graft fixation. The optimal amount of force applied to the graft before fixation is a matter of debate, with most authors recommending between 20 and 90N of initial graft tension. An under-tensioned graft will not restore knee native stability. An over-tensioned graft will pull the femur anteriorly on the tibia and restrict the ROM within the knee. This places the graft at increased risk of damage during normal physiological loading [55–57].

Conclusion: No consensus. Graft tension was not considered as a factor that affect the RTS in soccer.

15. “Enhance the biological ligamentization process during the surgery, should be fundamental in improving RTS in soccer” **No consensus 23%**

A systematic review [31] concluded that there is promising evidence that the addition of platelet-rich plasma (PRP) could be a synergic factor in acquiring faster ACL graft maturation, but the clinical implication of this remains unclear. Conversely, there is not an improvement with the addition of PRP in tunnel healing. Regarding the use of stem cells as adjuvants in ACLR, there is still a relative paucity of high-level evidence

16. “Cartilage and meniscal associated injuries, should be managed concomitantly with ACLR as these can be essential in the making decision to RTS in soccer” **Consensus 100%**

There is evidence in the literature that the menisci and cartilage state influences outcomes after ACLR [32,33,85]. Concomitant meniscus injuries, either in isolation or in combination with cartilage lesions, render a deterioration of clinical scores and quality of life between 5- and 10-year post surgery follow-up of ACL-reconstructed patients. No such deterioration was seen for patients who had isolated ACL injuries [81].

Articular cartilage injuries are a common clinical problem during ACL reconstruction with an incidence rate of 16–46%. Good results of ACLR combined with the treatment of chondral lesions have been published in many studies with patient satisfaction and improvement in their quality of life [32,33,58,59].

Conclusion: Consensus 100%. Cartilage and meniscal associated injuries should be managed concomitantly with ACLR as these can be essential in deciding RTS in soccer.

17. “Autografts are more successful in RTS in soccer and have less failure rates compared with allografts, especially in active young athletes” **Consensus: 100%**

Some studies have shown that autografts are preferred over allografts for primary ACLR in active young individuals due to the increased risk of allograft revision [34]. A case–control study of 2497 patients showed that the probability of re-tearing for subjects with allograft was 13-fold higher compared to the BPTB autograft [35]. Similarly, a systematic review showed that, the risk of graft failure was substantially greater in patients receiving allograft compared with patients receiving autograft [79].

Conclusion: Consensus 100%. Autografts are more successful in RTS in soccer than allografts.

18. “In Young patients (<25 years old), hyperlaxity, high rotatory laxity and revision cases we may consider adding a lateral extra-articular tenodesis (LEAT) to the ACLR for a better RTS in soccer” **Consensus: 92.3%**

ACL R with the addition of LEAT can decrease the time to RTS (median: 8 months versus 6 months for those without LEAT) in patients who are exposed to high-grade pivot change, ACL revision, or who met two or more minor criteria such as hypermobility, age under 20 years, failed contralateral ACLR, and elite athletes [36,82]. The STABILITY study and others has also shown that the addition of LEAT can decrease the risk of clinical failure reducing the rate of residual pivot shift and ACL graft retear [82,96].

Conclusion: High Consensus. In the high-risk population, we should consider adding a LEAT procedure to obtain a better RTS in soccer and reduce the reinjury risk.

Postoperative factors that could affect RTS in soccer

19. “RTS in soccer should be based on the participation of the patient in a complete rehabilitation program with objective goal-based progressions and objective criteria to discharge to sports participation, known to the patient, as a minimum requirement” **Consensus: 96.2%**

Rehabilitation following ACLR has shifted from a paradigm based on protocols to a goal-based program with objective criteria to progress
through rehabilitation phases [95]. When the patient is ready for RTS, objective criteria must be met to reduce the risk of further injury [83]. Higher levels of motivation during rehabilitation have shown to be associated with higher rates of return to preinjury sport following ACLR [84]. Athlete’s value playing an active role in their recovery and setting realistic expectations during rehabilitation contributes to their self-efficacy and recovery [37].

Conclusion: High consensus. The patient’s participation in a complete rehabilitation program is a critical factor that should be considered in RTS in soccer.

20. “RTS in soccer should include a questionnaire of the patient’s symptoms as pain, swelling, instability, giving way, locking sensation, stiffness, among others” Consensus: 88.5%

Symptoms such as pain, swelling and instability are one of the postoperative indicators of higher loads concerning the unstable and weakened knee, substantially related to a new knee injury, with the possibility of damage to the reconstructed ACL [23,25]. There are many patient-reported outcome measures (PROMS) that can be used, but these should not be used as isolated criteria for the decision of RTS in soccer.

Conclusion: High consensus. Subjective instability or inflammatory symptoms should be investigated in patients before RTS in soccer.

21. “RTS in soccer decision-making must include objective physical examination data as anterior drawer test, Lachman test, pivot shift test, ROM, effusion, pain, dial test, among others” Consensus: 96.2%

Clinical tests such as the Lachman, pivot shift and other have served as an index of knee stability both pre- and postoperatively [38,39]. However available high-quality evidence suggests that tests are not helpful on their own, but combinations may prove to be more beneficial both in the pre- and post-operative diagnosis. However only one-fourth of studies use clinical examination as objective criteria for RTS [38].

A systematic review of clinical tests for ACL injury [85] highlights the lack of clinical test accuracy data to support the use of history and physical examination to diagnose an ACL injury. Methodological flaws can overestimate the diagnostic accuracy of these tests [99].

Conclusion: High consensus. RTS in soccer should consider objective physical examination to assess knee laxity, ROM, and function.

22. “Before RTS in soccer, patients should pass a standardized, validated, objective analysis. These include isokinetic testing (strength symmetry evaluation) and hop tests (movement quantity and quality evaluation). When determining a safe RTS in soccer, physical performance-based tests results should demonstrate an LSI of 90%-100%, which is recommended to reduce the recurrence of injury and possible long-term complications” Consensus: 96.2%

An association has been found between the appearance of a second ACL injury in patients who return without meeting a variety of criteria, including restoration of ≥90% of the LSI, finding asymmetric quadriiceps strength and asymmetric knee function during jumping at the time of the RTS [37–39]. While values that correlate with perceived “normal” knee function can be provided for functional testing following ACL reconstruction, objective evidence is lacking for determining return to play criteria based on an exact result of a functional test. Many authors have advocated using multiple tests to assess full RTS status [86,91].

Conclusion: High consensus. A standardized functional test battery should be applied to patients before RTS in soccer.

23. “The hop test battery should always include single-leg hop, triple hop, crossover hop, and single-leg vertical hop.” No consensus: 73.1%

Even though passing a test battery including a series of single leg hop tests and isokinetic testing has been associated with lower re-rupture rates following RTS and an increased likelihood of returning to previous sporting levels, the hop and isokinetic tests do not consistently predict successful outcomes following ACL rehabilitation. A systematic review [61] reported no associations between the use of RTS discharge tests and greater risk of reinjury, stating the low quality of evidence affects our ability to make definitive conclusions. Similarly, a critical review [87] concluded that while the ACL hop tests display adequate reliability, the current evidence indicates a lack of consistency in their capacity to predict successful outcomes following rehabilitation either in terms of return to previous performance levels or identifying those at greater risk of re-injury.

Conclusion: No consensus. Single leg hop testing should not be considered as an isolated test to decide the readiness of athletes to RTS in soccer.

24. “The single-leg vertical hop test has been the most recommended for use in functional performance hop test batteries because of its value in discriminating between healthy versus ACL-injured limbs according to previous literature” No consensus: 19.2%

Petschnig et al. [41] states that the vertical jump test on one leg is sensitive enough to detect functional limitations in the lower limb after ACLR. Other studies have shown that the vertical jump test on one leg provides the lower sensitivity rate to detect functional limitations [60].

Some studies applying different hop test, based the RTS criteria in a limb symmetry index of 90% in all hop tests and 85% in isokinetic strength tests, that better inform the clinicans the underlying quadriceps deficits that still present [40,98].

Conclusion: No consensus. Single-leg vertical hop test was not considered as the most recommended test to discriminate between a healthy versus ACL-injured limbs. It should not be used as an isolated test before RTS soccer.

25. “Isokinetic quadriceps strength test should be performed with 3 submaximal (i.e., 50% effort) practice knee extension contractions being more reliable at a rate of 60°/s before attempting the maximal effort trials” Consensus: NO 65.4%

While isokinetic testing may also be used to assess the quadriceps after ACL reconstruction, it seems that isometric testing is a highly relevant clinical measurement [88]. In this way, there is a lack of consistency in RTS assessments, in particular hop tests and isokinetic test to predict who will sustain a reinjury following ACLR. A systematic review [62] demonstrated that only 23% of patients passed RTS test batteries, suggesting an apparent paradox that ‘passing’ an RTS battery was associated with a greater risk of injury to the contralateral limb.

Conclusion: No consensus. Isokinetic quadriceps strength test performed with 3 submaximal (i.e., 50% effort) practice knee extension contractions by itself is not a reliable test to be considered for RTS.

26. “RTS in soccer should involve assessment of specific functional skills that demonstrate the appropriate physical performance such as quality of movement, strength, ROM, balance, and neuromuscular control of the lower extremity and body” Consensus: 96.2%

Many papers highlight the key areas that require special attention in a rehabilitation program as the restoration of neuromuscular performance, muscle strength, ROM and quality of movement (kinematics) before RTS, as they can reduce the risk of ACL injury. It is also recommended to consider factors such as time, psychological preparation, self-confidence, stability and jumping tests [42–45,53].

Conclusion: High consensus. Assessment of specific functional skills that demonstrate the appropriate physical performance such as
quality of movement, strength, ROM, kinematics, and neuromuscular control of the lower extremity and body should be considered before RTS in soccer.

27. “In addition to physical readiness, the athlete’s psychological state is crucial for RTS in soccer timing and outcomes, so a psychologically validated scale should be used as an essential tool to make the correct decision for RTS in soccer” **Consensus: 100%**

A recent study [63] highlights the importance of incorporating the evaluation of psychological responses in RTS testing. Psychological readiness measured 9 months after surgery was found to be predictor of RTS in young patients (<25 years old) [22,41,47]. Many studies showed that younger athletes were more likely to return to their pre-injury level of sport [9,10,89,90]. However, they suggested that age could be a proxy for other factors as younger patients are more likely to return to high-risk sports involving cutting, jumping and pivoting movements. One study showed that younger age was a significant predictor of return to sport, with 81% of patients aged <25 years having already returned to level I/II sports at the time of the clinical evaluation. It is reasonable that a young person has a higher level of sports activity and a stronger sense of athletic identity, acting as a positive motivator for RTS and a catalyst for future injuries [22,46,47].

Conclusion: High consensus. Age was considered as an important factor related to RTS in soccer.

29. “Even though, as a doctor, one might be satisfied with the outcome of treatment (adequate graft placement and fixation, symmetric strength, excellent agility, the patient is back to playing his sport), the patient might still have a different perspective regarding a successful outcome. Therefore, self-personal satisfaction tests should be applied before RTS in soccer” **Consensus: 92.3%**

Besides clinical and physical performance-based tests, subjective outcomes such as PROMS might have an important role in determining readiness for RTS. They offer a more complete picture of the patient’s perception of the actual recovery after ACL surgery [90]. Dissatisfied patients are those who tend not to understand their abilities and limitations in the postoperative period, thus leading to a greater risk of future injuries [48].

Conclusion: High consensus. Patient-specific and subjective personal interpretation and satisfaction should be considered before RTS in soccer.

30. “At this time, using magnetic resonance imaging (MRI) to investigate graft healing is promising; however, it has not been validated to ensure graft maturity and biomechanical strength. MRI decisively should not be used as an isolated parameter for deciding the RTS in soccer” **Consensus: 76.9%**

MRI shows a promising modality for evaluating ligament characteristics using measurements such as graft volume and signal intensity to extrapolate the mechanical strength of the graft. MRI-based graft maturity cannot predict clinical and functional outcomes in patients at the first-year follow-up. Graft maturity should not be used as an objective test to determine the appropriate time to RTS during the first year after ACL reconstruction [49, 50, 64].

Conclusion: Moderate consensus. MRI should not be used as an isolated and reliable test for RTS in soccer.

31. “Purely time-based RTS in soccer should not be used as a single and definitive factor to decide readiness parameter in RTS in soccer” **Consensus: 100%**

Several studies have demonstrated deficits in muscular strength, kinesthetic sense, balance and force attenuation 6 months to 2 years following ACLR [7,16,20,26,52]. Therefore, returning to sport at 6 months following ACLR is no longer the expected norm [83]. Grindem et al. [23] showed that RTS 9 months or more after surgery substantially reduces the rate of new injuries and, that by each month, the RTS was delayed after the 6 months, the risk of new knee injuries was reduced by 51%.

Conclusion: consensus 100%, purely time-based, should not be used as a parameter to decide RTSS.

32. “Other important factor for RTS in soccer is the quality of movement. Using solely, the LSI can mask kinematic deficits (movement quality)” **Consensus: 96.2%**

A bilateral deficit may lead to a falsely high LSI since LSI is calculated as a ratio between the values of the lower limbs. Buckthorpe et al. [43, 44] indicate that a sufficient LSI may have low levels of absolute resistance leading to a patient being insufficiently prepared to tolerate load demands.

Conclusion: High consensus. The LSI is a good test to evaluate functional deficits (hop testing) but should not be used as a single parameter to evaluate knee function for RTS in soccer, as can mask kinematics unbalances.

33. “Increasing the quality of the ACL rehabilitation by implementing more progressive strength training results in higher passing rates in strength criteria, which potentially increase RTS in soccer rates and decrease the risk for second ACL injury” **Consensus: 84.6%**

Progressive strength training in ACL rehabilitation can mitigate commonly reported strength deficits [40]. If proper progressive strength training is implemented, amateur male soccer players after ACL reconstruction achieve similar knee strength after ACLR at 7 months compared to healthy controls [97].

ACL rehabilitation progression should be based on objective criteria and not just time frames [83].

Consensus: High consensus. Rehabilitation after ACLR should follow a progressive strengthening program which may increase the rate of RTS in soccer and decrease the rates of a second ACL injury.

34. “Most of the current test batteries can be used to determine the likelihood that patients resume RTS in soccer at pre-injury level, but fail in identifying patients who are at risk for a second ACL injury” **Consensus: 88.5%**

There is still a lack of consistency in the battery of tests used to decide on the athlete’s readiness to RTS, with a time-based approach still being used in some studies [40]. A battery of test can identify with some accuracy those at higher risk of graft tear, but not those at risk of secondary ACL injuries [62,92,98].

Conclusion: High consensus. Most of the current test batteries for a safe RTS in soccer fail in predicting which athletes are at higher risk of a second ACL injury.

35. “Psychological readiness for RTS in soccer is essential after ACLR since this is a predictor for returning to the pre-injury level and
secondary ACL injuries of the sport in amateur athletes”

Consensus: 100%

The RTS is multifactorial, requiring both physical and psychosocial recovery after surgery. Physical functioning assessment has traditionally dominated RTS evaluation, but there is emerging evidence for incorporating psychological factors in these decisions. The psychological disposition to return to sports and recreational activity has been a factor strongly associated with the RTS and risk of reinjury [45,51,63].

Conclusion: Consensus 100%. Psychological readiness is a crucial factor that should be considered in RTS in soccer.

36. “Using patient-reported outcomes as International Knee Documentation Committee 2000 Subjective Knee (IKDC) Form, and Tegner activity rating scale, give us a reliable and valid measure of patient-reported function in the making decision to RTS in soccer”

Consensus: 80.8%

The assessment of knee-specific PROMs, such as the IKDC form, has traditionally been regarded as an essential measure of successful outcome after ACLR and is often used in conjunction with other RTS objective measures [38]. An IKDC score ≥94.8 predicted a quadriceps LSI ≥90% with high sensitivity and moderate specificity suggesting that the patient is at an acceptable level of RTS. Additionally, Tegner physical activity rating assesses the current level of physical activity with acceptable validity [38,52].

Conclusion: High consensus. The use of PROMs as IKDC and Tegner could be useful in the making decision to RTS in soccer.

37. “All parameters used for a safe RTS in soccer will also act as preventive measures for a new ACL injury.”

Consensus: 88.5%

The evidence shows conflicting results for the relation between RTS criteria and potential risk for second ACL injury (98, 100). However, most of the tests are carried out to evaluate the safety of RTS as well as to determine the recovered functional capacity. If patients pass, they probably have a lower risk of re-injury [54,61].

Conclusion: High consensus. Although there is a controversial literature, the panel of experts believes that all parameters used to RTS in soccer prevent new ACL injury.

Conclusion

Regarding the results of the Consensus, return to sport soccer after an ACL reconstruction is a decision that must be based on multifactorial parameters. The panel of experts strongly recommend taking into account. In the preoperative, the correction of the ROM deficit, the previous high level of participation in sports and a better knowledge of the injury by the patient and compliance to participate in Rehabilitation. During the surgery, the treatment of associated injuries, as well as the use of autografts and the addition of a lateral extra-articular tenodesis in some particular cases (active young athletes, <25 years old, hyperlaxity, high rotatory laxity and revision cases) could be associated with a higher return to sports.

In the postoperative period, psychological readiness and its validation with scales, adequate physical preparation, as well as not basing the RTSS purely on the time of evolution after surgery are the factors that reached unanimous Consensus.

However, despite strong consensus by experts, there is a need for larger randomized trials that analyses better each factor that can participate in RTSS with longer-term follow-up.

Funding

None of the authors have received financial support for this paper.

