Rebranding the ‘Anatomic’ ACL reconstruction: current concepts

Kyle A. Borque, MD, Mitzi S. Laughlin, PhD, Vítor Hugo Pinheiro, Mary Jones, MSc, Grad Dip Phys, Andy Williams, FRCS(Orth)

PII: S2059-7754(22)00101-8
DOI: https://doi.org/10.1016/j.jisako.2022.11.001
Reference: JISAKO 66

To appear in: Journal of ISAKOS

Received Date: 27 June 2022
Revised Date: 3 October 2022
Accepted Date: 11 November 2022

Please cite this article as: Borque KA, Laughlin MS, Pinheiro VH, Jones M, Williams A, Rebranding the ‘Anatomic’ ACL reconstruction: current concepts, Journal of ISAKOS, https://doi.org/10.1016/j.jisako.2022.11.001.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier Inc. on behalf of International Society of Arthroscopy, Knee Surgery and Orthopedic Sports Medicine.
Rebranding the ‘Anatomic’ ACL reconstruction: current concepts

Authors: Kyle A. Borque, MD¹, Mitzi S. Laughlin, PhD², Vítor Hugo Pinheiro³, Mary Jones, MSc, Grad Dip Phys⁴, Andy Williams, FRCS(Orth)⁴

1. Houston Methodist Hospital, Houston, Texas, USA
2. Houston Methodist Research Institute, Houston, Texas, USA
3. Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
4. Fortius Clinic, FIFA Medical Centre of Excellence, London, UK

 Corresponding author:
Kyle Borque, MD
Houston Methodist Orthopedics
16811 Southwest Freeway
Sugar Land, TX 77479
Email: kaborque@gmail.com
Phone: 1+ 346-371-3550

Keywords: Anterior cruciate ligament reconstruction, ACL, anatomic ACL reconstruction

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Rebranding the ‘Anatomic’ ACL reconstruction: current concepts

Abstract

The ACL is a complex ribbon-like structure, which is approximately 3.5 times larger at the tibial and femoral insertions than at the midpoint. Accordingly, it is impossible to recreate with a single cylindrical graft. However, this has not stopped surgeons from using the term ‘anatomic’ to describe multiple ACL reconstruction techniques inserting at a number of different locations within the original ACL footprint, causing confusion. The term ‘anatomic’ should be discarded and replaced by an anatomic description of the tunnel placements on the tibia and femur. Current ACL reconstruction techniques cite anatomical studies that identified ‘direct and indirect fibres’ of the ACL. The ‘direct fibres’ bear 85-95% of the load and provide the main resistance to both anterior tibial translation and internal rotation/pivot shift. On the femur these fibres insert in a line just posterior to the intercondylar ridge and comprise the portion of the ACL that surgeons should strive to restore. Placement of the graft just posterior to the intercondylar ridge creates a line of placement options from the anteromedial bundle to the ‘central’ position, and finally to the posteromedial bundle position. The authors prefer placing the femoral tunnel in the isometric anteromedial position and addressing a high-grade pivot shift at the IT-band with a lateral extra-articular tenodesis. As with the femoral tunnel, the native ACL footprint on the tibia is much larger than the ACL graft and thus can be placed in multiple ‘anatomic’ locations. The authors prefer placement of the tibial tunnel in the anterior most position of the native footprint, that does not cause impingement in the femoral notch. Additional research is needed to determine the ideal tunnel positions on the femur and tibia and validating the technique with patient outcomes. However, this cannot be accomplished without describing tunnel placement with specific anatomical locations so other surgeons can replicate the technique.
Current Concepts

- In the last 100 years, multiple reconstruction constructs have been proposed in an effort to mimic the complex ribbon-like structure of the ACL.

- Many of these ACL reconstruction techniques have been termed ‘anatomic’ because the graft is placed within the native ACL footprint, however the footprint is 3.5 times larger than a typical graft allowing great variation in placement of both the femoral and tibial tunnels.

- The authors prefer placing the femoral tunnel in the isometric AMB position (which is both anatomic and isometric) and choose to address a high-grade pivot shift at the location of the pathology (the ITB) with a lateral extra-articular tenodesis.

- Preferred tibial tunnel placement is the anterior most position of the native footprint which does not result in impingement.

Future perspectives

- Descriptions of ACL reconstruction techniques should not be simply described as ‘anatomic’ rather the surgeons should identify specific anatomical locations for the placement of the tibial and femoral tunnels in sufficient detail to replicate the technique by another surgeon.

- Future studies should validate tunnel placement with patient outcome measures as well as return to play and performance metrics.
Introduction

The first described surgical treatment of an anterior cruciate ligament (ACL) injury was an anatomic repair performed in 1895 by Mayo-Robson of Leeds, UK [1]. In 1917 Hey Groves of Bristol, UK, performed the first anterior cruciate ligament reconstruction (ACLR) [2] and since then surgeons have used a variety of intra-articular and extra-articular procedures in an attempt to restore stability to the injured knee [1]. Over this time, debate has revolved around the ideal graft choice, open versus arthroscopic, tunnel placement, graft fixation method, and more recently extra-articular augmentation [3–5] of an intra-articular graft [6,7].

Multiple constructs have been proposed in an effort to mimic the complex ribbon-like structure of the ACL [8]. However, it is impossible to truly recreate a ligament that is 3.5 times larger at its tibial and femoral insertions than its midpoint with a single cylindrical graft [9,10]. In addition, reconstruction does not restore the intra-articular attachments of the native ACL. Unfortunately, this has not stopped surgeons from using the term ‘anatomic’ to describe their ACLR techniques. Not only is the term ‘anatomic’ inaccurate, but it also suggests the optimal reconstruction, and thereby superiority to other techniques. Furthermore, multiple techniques have been described as ‘anatomic’, thus causing confusion when attempting to interpret outcomes [11–16]. It is for these reasons that the authors feel the term ‘anatomic’ should be avoided in the literature and replaced by an accurate description of the tunnel positions and fixation methods utilized.

Anatomical reference terms

It is important in all studies to define the terms used to describe the tunnel positions. With the knee flexed approximately 90 degrees for arthroscopy (Figure 1) and regarding the intercondylar notch, the term ‘deep’ is ‘proximal’ according to anatomical nomenclature and ‘high’ is ‘anterior’ and ‘low’ is ‘posterior’. To help guide tunnel placement the ‘clock-face’ concept was popularised
with 12 o’clock being the highest / most anterior position in the intercondylar notch, which
corresponds to where the vertically aligned lateral edge of the PCL attaches (Figure 2). While useful,
the clock-face concept has been criticised since being two-dimensional it gives no guidance
regarding depth (proximo-distal) position of the femoral tunnel [17].

Figure 1 Arthroscopic view of the lateral wall of the intercondylar notch of a left knee as viewed
from the anteromedial portal. The lateral intercondylar ridge and lateral bifurcate ridge are
denoted by a dashed line. Anterior (high), posterior (low), distal (shallow) and proximal (deep)
locations are noted.

Figure 2. Arthroscopic view of the lateral wall of the intercondylar notch of a left knee with
overlaid clock face. The native ACL can be seen inserting between 1 and 3 o’clock.

Relevant History

Early arthroscopic ACL reconstruction techniques relied on drill guides positioned to place a
guide wire in the tibia in a site that could be ‘railroaded’ proximally into the femur so that both tibial
and femoral tunnels could be drilled sequentially over the same wire (the transtibial technique). It
was thought that with the wire angled 40 degrees to the sagittal tibial slope two well-placed tunnels
would result [18,19]. Unfortunately, since the femoral tunnel position was determined by the tibial
tunnel position and inclination, it frequently ended up more anterior (higher in the notch) than the
native femoral ACL footprint, resulting in compromised rotational stability and increased subsequent
medial meniscus injury [19–23].

In the early 2000’s fuelled by the improvements in soft tissue knee surgery that had
accompanied better understanding of anatomy and the trend to mimic anatomic structures, double-
bundle ACL reconstruction techniques were promoted [24–26]. The belief was that the
anteromedial bundle (AMB) graft would resist anterior tibial translation (ATT) and the posterolateral
bundle (PLB) would resist internal rotation with its bigger lever arm [23,27–29]. Although cadaveric
studies suggested a biomechanical advantage [30–35], multiple clinical studies showed a lack of
superiority in patient-reported outcomes, pivot shift, or return to play measures [36–40], which
prevented the technique from gaining widespread use.

Promoters of the double bundle construct concept then compromised by placing the
femoral tunnel for a single bundle construct at the centre of the femoral footprint and termed it
‘anatomic’ or ‘anatomical’ ACL reconstruction [9,41]. The term ‘anatomic’ ACL reconstruction has
since been commonly used, frequently without an accompanying technical or anatomical
description. Multiple authors have used the term, without clarification, in describing different tunnel
locations and even different surgical techniques [42].

What is ‘anatomic’ on the femur?

The femoral ACL insertion covers a large portion of the lateral wall of the intercondylar
notch [43–45], extending posteriorly from the intercondylar ridge to the articular surface. Surgeons
must decide where in this large area to place a typical 8-10 mm tunnel in an attempt to restore
stability to the knee [46]. This decision can be broken down into two axes referenced by the lateral
intercondylar ridge: how far anterior or posterior to the intercondylar ridge and proximal or distal
along the ridge [8,47]. Whilst placing a graft in the centre of the femoral ACL ‘footprint’ may seem
logical, it must be acknowledged that this does not recreate the complex native anatomy of the ACL
[8–10]. In addition, it is important to note that all tunnel positions that fall within the large footprint
of the native ACL could be considered anatomic [11].
Over time, there has been an evolution regarding the ideal position of the femoral tunnel on the clock-face. Original arthroscopic transtibial techniques yielded a femoral tunnel high in the notch resulting in poor rotational control and increased subsequent medial meniscus injuries. This was followed by grafts placed very low (posterior) in the notch, near the articular surface, in an effort to better control rotation. However, this was found to increase the forces on the graft and result in a graft that loosened in flexion and tightened in extension. Multiple recent studies have identified that whilst the ACL inserts over a large footprint, it does so through two distinct groups of fibres: direct and indirect. The ‘direct fibres’ of the ACL, which insert in a line just posterior to the intercondylar ridge (Figure 3), bear 85-95% of the load and provide the main resistance to both anterior tibial translation and the internal rotation/pivot shift [47–50]. This area correlates with the greatest density of collagen fibres as well as the highest tensile strength [51–53]. It is therefore reasonable to conclude that these direct fibres, comprise the portion of the ACL that surgeons should strive to restore.

Figure 3. Arthroscopic view of the lateral wall of the intercondylar notch of a left knee viewed from the anteromedial portal. Location of the deep fibres is denoted with a solid pattern while the indirect fibres are noted with a diagonal stripe pattern.

Acknowledging that the graft should be placed just posterior to the intercondylar ridge, leaves a line of possibilities as to where to place the graft: beginning anteriorly and proximally with the AMB position, moving distally and posteriorly to the ‘central’ position, and further in the same direction to the PLB position (Figure 4) [54]. Proponents of the central tunnel position aim to use one cylindrical graft to replicate the complex ribbon-like structure of the native ACL’s anteromedial and posterolateral bundles [8].
Figure 4. Arthroscopic view of the lateral wall of the intercondylar notch of a right knee viewed from the anteromedial portal. The anteromedial bundle position (AM), central position (C), and posterolateral bundle position (PL) are noted.

However, some of these same surgeons have shown no difference in time zero stability between the single bundle AMB position and single bundle central position [11,55]. Furthermore, Nawabi et al confirmed prior studies that the direct fibres in the AMB position represent the most isometric fibres of the native ACL [47,48,56–58]. Clinically, there are three reports of an increase in re-rupture rate following a move from an AMB to a central femoral position [3,8,59]. While some may suggest that this is a result of the graft more effectively resisting instability (personal communication with Freddie Fu), another explanation could be the lack of isometry and increased loads of a graft placed in the central position [47]. Finally, surgeons should remember that while the ACL is the primary restraint to anterior tibial translation throughout range of motion, it is the fibres of the iliotibial band that offer the most resistance to tibial internal rotation and the pivot shift [60], with the ACL only being important in full extension. For these reasons, the authors prefer placing the femoral tunnel in the isometric AMB position [61] (which is anatomic and isometric) choosing to address a high-grade pivot shift at the location of the pathology (the ITB) with a lateral extra-articular tenodesis [5].

What about the tibial tunnel?

While significant attention has been paid to finding the correct femoral tunnel position, the importance of tibial tunnel position is frequently overlooked. Authors frequently report ‘anatomic’ tibial tunnel placement, ignoring the impossibility of recreating the native ACL’s C-shaped insertion around the lateral meniscus anterior root with a single cylindrical tunnel [8,9]. Original transtibial
techniques utilized a more posterior tunnel placement, usually at the tibial insertion of the native PLB, to allow access to a more anatomic femoral position [62–64]. This graft alignment (PLB on the tibia to AMB on the femur) was shown to result in a graft 10 degrees more vertical in both the coronal and sagittal plane than the native ACL, compromising both translational and rotational stability [65,66]. With the tibial tunnel placed in the PLB position, it was found that stability was not able to be restored, regardless of the placement of the femoral tunnel. Following this, Bedi et al showed that a more anteriorly placed tibial tunnel resulted in better control of the Lachman and pivot shift manoeuvres but was careful to note that it carried greater risk of impingement on the femoral notch if placed excessively anterior [63,67–69], which in the clinical setting can block extension or lead to failure of the ACL graft. Recently, Lord et al confirmed that the native ACL fibres inserting at the tibial AMB position were the primary restraint to ATT, tibial internal rotation, and pivot shift [70]. In the acute setting, the tibial stump is frequently easily identifiable as a guide for placement of the tibial tunnel while anatomic landmarks such as the lateral meniscus or PCL and fluoroscopy can be used in the revision setting or a chronic ACL injury [71–75]. Variation exists amongst patients, the center of the tibial tunnel is on average 38 to 40% posterior to the anterior border of the tibial plateau, with a recent study showing improved stability when the graft was placed anterior the 40% line [73,76–79]. Consequently, the authors prefer placement of the tibial tunnel in the anterior most position of the native footprint which does not result in impingement. The effects of varying the tibial tunnel amongst different ‘anatomic’ positions again highlights the importance of authors providing exact descriptions of their tunnel positions rather than just terming the technique ‘anatomic’.

Peripheral Lesions Associated with ACL Rupture

It has become increasingly evident that the ideal ACL reconstruction is not just about the ACL graft position, fixation, and graft type. At one time undiagnosed posterolateral corner injuries,
which increase forces on the ACL graft, were cited as the number one reason for ACL graft failure [80]. Over the past decade, the incidence of anterolateral complex injury in the setting of ACL injury has been shown to be as high as 90% [81–84]. In the setting of combined ACL and anterolateral injury, many cadaveric biomechanical studies have found that ACLR alone cannot restore normal control of the pivot shift [60,85]. These studies concluded that only in full extension is the ACL the primary restraint to internal rotation and the pivot shift, whereas in the flexed knee it is the deep capsule-osseous layer of the ITB that prevents internal rotation and the pivot shift. Anterolateral procedures such as lateral extra-articular tenodesis and anterolateral ligament reconstruction have shown to be critical in offloading the ACL graft and restoring rotational stability to the knee [5,85–89]. More recently a high incidence of injuries to the medial ligament complex, namely the superficial and deep MCL, has been noted in the setting of previously assumed ‘isolated’ ACL injuries [90]. Clinical and biomechanical studies have highlighted the importance of addressing these injuries at the time of ACLR [91–93]. Due to this, surgeons must learn to identify and treat the many pathologies associated with ACL injury in an attempt to attain the most ‘anatomic’ result.

Conclusion

Using the word anatomic to describe an ACL reconstruction technique is vague at best and misleading at worst. The term implies superiority to other ‘non-anatomic’ techniques, whilst ignoring the fact that no current reconstruction techniques truly recreate the complex anatomy of the ACL. In reality, any graft placed within the large native femoral and tibial footprints could be considered anatomic, thus highlighting the danger of using this term without accurate description on the placement of both the femoral and tibial tunnels.
References


https://doi.org/10.1016/j.arthro.2004.08.010.


https://doi.org/10.1016/j.arthro.2008.05.021.


https://doi.org/10.1177/03635465020300050501.


https://doi.org/10.1016/j.arthro.2012.08.024.


https://doi.org/10.1007/s00264-012-1651-1.


https://doi.org/10.1016/j.arthro.2010.03.005.


Nawabi DH, Tucker S, Schafer KA, Zuiderbaan HA, Nguyen JT, Wickiewicz TL, et al. ACL fibers near the lateral intercondylar ridge are the most load bearing during stability examinations
375 [48] Kawaguchi Y, Kondo E, Takeda R, Akita K, Yasuda K, Amis AA. The role of fibers in the femoral
376 attachment of the anterior cruciate ligament in resisting tibial displacement. Arthroscopy
378 [49] Farrow LD, Chen MR, Cooperman DR, Victoroff BN, Goodfellow DB. Morphology of the
380 https://doi.org/10.2106/JBJS.F.01191.
382 of the anterior cruciate ligament: Discrepancy between macroscopic and histological
387 [52] Petersen W, Tillmann B. Structure and vascularization of the cruciate ligaments of the human
389 [53] Butler D, Guan Y, Kay M, Cummings J, Feder S, Levy M. Location-dependent variations in the
392 [54] Zantop T, Wellmann M, Fu FH, Petersen W. Tunnel positioning of anteromedial and
393 posterolateral bundles in anatomic anterior cruciate ligament reconstruction: Anatomic and
396 [55] Markolf KL, Jackson SR, McAllister DR. A Comparison of 11 o’clock versus oblique femoral
397 tunnels in the anterior cruciate ligament-reconstructed knee: Knee kinematics during a


Parkinson B, Gonga R, Robb C, Thompson P, Spalding T. Anatomic ACL reconstruction: The normal central tibial footprint position and a standardised technique for measuring tibial
tunnel location on 3D CT. Knee Surgery, Sport Traumatol Arthrosc 2017;25:1568–75.

https://doi.org/10.1007/s00167-014-3041-2.


https://doi.org/10.1016/j.arthro.2018.08.032.


https://doi.org/10.13107/aja.2020.v05i01.007.


Declaration of interests

☐ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☒ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Andy Williams reports a relationship with Smith and Nephew Inc that includes: funding grants and non-financial support. Andy Williams reports a relationship with DocComm Inc that includes: equity or stocks. Andy Williams reports a relationship with Innovate that includes: equity or stocks. Kyle Borque reports a relationship with Xiros Ltd that includes: consulting or advisory.