and the highest levels of alpine sports. The data was later linked to the database from the main Swedish insurance company of injuries for organized licensed and elite athletes, for additional injury information in future studies. Professional athletes, 15–40 years of age, who sustained an anterior cruciate ligament (ACL) injury and later underwent ACL-R during seasons 2005–2020 while playing in the two highest divisions in team sports or participating in official International Ski and Snowboard Federations were included. Outcomes were evaluated based on athletes sex, age, and division. The IR of ACL-R was calculated as injuries per 1000 athlete events (AE) and as injuries per 100000 athlete-seasons. Results Preliminary results identified a total of 1014 ACL-R in 932 athletes during the study period. Female basketball athletes had 5.6 times higher IR of ACL-R than male basketball athletes (IR 1.238 vs 0.221 per 1000 AE, incidence rate ratio [IRR] 5.595, 95% CI 3.370–9.289, p < 0.001). In soccer, handball, floorball, and alpine sports the IR of ACL-R per 1000 AE was 2 to 3 times higher for females than males. In professional ice hockey however, there was no significant difference in the IR of ACL-R between females and males (IR 0.080 vs 0.081 per 1000 AE, IRR 0.982, 95% CI 0.388–2.485, p = 0.844). The IR of ACL-R per 1000 AE in soccer was significantly higher compared to floorball, ice hockey, and alpine sports in both females and males. There was a significant higher IR of ACL-R in female handball athletes compared to female soccer athletes (IR 1.705 vs 1.161 per 1000 AE, IRR 1.469, 95% CI 1.163–1.857, p < 0.001). Conclusion This is the first nationwide study looking at the total IR of ACL-R in six different knee-strenuous sports during a same study period. The IR of ACL-R per 1000 AE in handball, soccer, basketball, floorball, and alpine sports were significantly higher in female athletes compared to male athletes. However, there was no significant difference in IR of ACL-R per 1000 AE in elite ice hockey between females and males. It seems necessary to continue to study and understand the IR of ACL-R in different sports to improve preventive measures for ACL injuries in the right sports and in the right individuals.

Category: Knee - ACL

Lateral Meniscus Extrusion on Magnetic Resonance Imaging of Anterior Cruciate Ligament Injury is Likely Complicated by Lateral Meniscal Posterior Root Tears

Abstract ID# 21861
All Authors:
Yusuke Yanatori MD JAPAN
Junsuke Nakase MD, PhD JAPAN
Rikuto Yoshimizu JAPAN
Mitsuhiko Kimura JAPAN
Tomoyuki Kanayama MD JAPAN
Hiroiuyki Tsuchiya JAPAN

Summary:
If preoperative magnetic resonance imaging of anterior cruciate ligament injury reveals lateral meniscus extrusion (LME) over 2.2 mm, there is a high possibility of complete lateral meniscus posterior root tear (LMPRT) complications. This LME cut-off value had a sensitivity of 78% and specificity of 71% for complete LMPRT.

Data:
Background Lateral meniscus posterior root tears (LMPRTs) have been identified as a combined injury with anterior cruciate ligament (ACL) rupture in 6.7–20.4% of patients in previous studies. Because LMPRT is associated with meniscal extrusion and rotational instability and has been linked to degenerative changes in the knee, complete LMPRT repair is recommended. However, it is difficult to diagnose complete LMPRT based on magnetic resonance imaging (MRI) findings alone. In addition, even with an intact meniscal root, various degrees of LM extrusion (LME) are usually observed in association with ACL tears. Therefore, LME has not been demonstrated as an indicator of LMPRT.

Objectives The purpose of this study was to investigate the relationship between preoperative LME, provide an arthroscopic evaluation of LMPRT in ACL-injured knees, and determine the complete LMPRT cut-off value from preoperative LME. We hypothesized that preoperative LMEs would be larger in patients with complete LMPRTs associated with ACL injuries than those with partial LMPRTs with ACL deficiency. Study Design & Methods Four hundred four patients who underwent ACL reconstruction at our hospital between February 2011 and July 2021 were retrospectively evaluated. A total of 45 patients were included in the study, 35 with LMPRTs with concomitant ACL injuries and 10 with intact lateral menisci with ACL injuries. The most widely used classification of La Prade divides the LMPRTs into five types. Using this classification, 35 patients were divided into two groups, partial (type 1) and complete (types 2–5) LMPRTs, based on arthroscopic findings at the time of ACL reconstruction. LME was measured using MRI as the distance from the lateral edge of the tibial plateau cartilage to the outer border of the LM. Results A total of 35 LMPRTs were classified using the morphological classification system; 17 knees (10 males and 7 females; mean ± SD age 23.5 ± 11.5 years) were classified into the partial LMPRT group and 18 (9 males and 9 females; mean ± SD age 20.4 ± 6.7 years) into the complete LMPRT group. Patients in the complete LMPRT group had 3 radial tears (type 2), 11 bucket-handle tears (type 3), and 4 oblique tears (type 4). There were no cases of avulsion fractures (Type 5). 20 knees (10 males and 10 females; mean ± SD age 20.7 ± 2.7 years) were classified into the intact lateral meniscus group. There were no significant differences between the three groups in terms of the relevant characteristics of the participants. On MRI evaluations, preoperative LMEs were larger in complete LMPRTs associated with ACL injuries than that in intact lateral menisci with ACL injuries and partial LMPRTs with ACL injuries. The ROC analysis identified the optimal cut-off point of the preoperative LME as 2.2 mm, which had a sensitivity of 78% and specificity of 71% for complete LMPRT. Conclusion When a preoperative MRI of ACL injury reveals LME over 2.2 mm, there is a high possibility of complete LMPRT complications.

Category: Knee - ACL

Delayed ACL Reconstruction Increases the Incidence of Concurrent Intra-Articular Pathology in Adolescent Patients

Abstract ID# 21896
All Authors:
Todd Phillips MD UNITED STATES
Tucker Cushing MD UNITED STATES
Zachary Terner PhD UNITED STATES
Neal Goldenberg MD UNITED STATES
Theodore B. Shybut MD UNITED STATES

Summary:
Skeletally mature patients with surgery >12 weeks from injury are at the highest risk for chondral and meniscal injuries in delayed ACL reconstruction. Data:
Abstract: Introduction: Knee injuries, specifically anterior cruciate ligament (ACL) injuries, are becoming increasingly more common in the young athlete. Recent literature has highlighted the association of intra-articular pathology, specifically the menisci and articular cartilage, within ACL-deficient knees. Time-to-surgery has been shown to significantly affect the rates of concurrent injuries at the time of ACL reconstruction after 6 months; however, this has not been well studied in the transitional adolescent population with the addition of skeletal maturity as a risk factor. Purpose: To evaluate if delays in ACL reconstruction (ACLR) impact the observed incidence of concomitant meniscal and chondral injuries in an adolescent cohort and to identify and recommend a surgical timeframe after which concurrent injuries significantly worsen. Study Design: Retrospective Cohort Methods: Included subjects were aged 21 and below and underwent primary ACLR within 6 months of injury between January 2012 and April 2020. Skeletal maturity was determined via radiographs. Laterality, location, and severity/pattern of meniscal and chondral injuries were recorded. Multivariate logistic regression was utilized to identify risk factors for intra-articular pathology. Cut-off analysis was added to regression models to identify trends of concurrent injuries. Results: 850 patients met inclusion criteria. Patients with observed articular cartilage injuries had a significantly increased average time to surgery of 66 days (p < 0.008), while medial meniscal injuries trended towards significance (p = 0.09). Survival analysis portrayed a significant degradation rate between patients with and without chondral injuries (p = 0.01). Multivariable regression analysis indicated that chondral injuries were predicted by time to surgery (OR 1.01, 95% CI [1.00,1.01], p = 0.009) and skeletally mature patients (OR 0.00, 95% CI [0.00,0.07], p = 0.014). Cut-off analysis showed that after 8 weeks the proportion of patients with observed chondral injury that had not undergone surgery increased with time, and that patients with surgery >12 weeks had significantly higher risk of intra-articular injury compared to acute fixation (<6 weeks). Medial meniscal injuries were prognosticated by time-to-surgery (OR 1.52, 95% CI [1.05,2.18], p = 0.025), skeletally mature patients (OR 0.00, 95% CI [0.00,0.020], p = 0.009), Age*Skeletal Maturity (OR 1.55, 95% CI [1.16,2.13], p = 0.004), and Sex*Skeletal Maturity (OR 0.20, 95% CI [0.08,0.51], p < 0.001). Time-to-surgery was not a risk factor for lateral meniscal tears. Conclusion: Skeletally mature patients with delays in ACL reconstruction greater than 12