41% of grade I, 37% grade II, 20% grade III, 2% grade IV, the Howell score of the Ar graft was respectively 61, 26, 13 and 1%. The proportion of the graft in contact with the bone wall of the tibial tunnel was 81% ± 23, the mean filling of the graft volume inside the tibial tunnel was 80%. No significant correlations were found between tibial tunnel expansion and graft maturation at both locations: SNQ Ti graft (r = 0.455), SNQ Ar graft (r = 0.455), Howell score Ti (r = 0.58) and Ar graft (r = 0.47). Graft maturation was correlated with the proportion of graft-to-bone contact and graft occupancy volume (r = 0.05). Conclusions At 2 years of ACL reconstruction using a ST4 fixed by ASF, the average tibial tunnel enlargement was 13% and no correlation was found between graft maturation and tibial expansion. Maturation appears to be correlated with graft-bone contact and graft occupancy volume in the tibial tunnel. Category: Knee - ACL Graft Choice

A Randomised Controlled Trial Comparing Hamstring Tendon Versus Quadriceps Tendon Autograft In Anterior Cruciate Ligament Reconstruction: 2-Year Clinical Results

Abstract ID# 22064
All Authors:
Ross Radic MBBS FRACS (Ortho) FAOrtha AUSTRALIA
Nicholas Calvert MBBS FRACS (Ortho) FAOrtha AUSTRALIA
Jay R. Ebert PhD AUSTRALIA

Summary:
Quadriceps autograft tendon shows similar 2 year clinical results, patient reported outcomes and return to sport rates compared with hamstrings autografts used for anterior cruciate ligament reconstruction in the athletic population.

Background:
Numerous graft options are reported when undertaking anterior cruciate ligament reconstruction (ACLR), though a lack of high-quality evidence exists comparing quadriceps (QT) and hamstrings (HT) autografts. Purpose: To investigate patient outcomes in patients undergoing HT versus QT ACLR. Study Design: Randomized controlled clinical method. Methods: Following recruitment and randomization, 112 patients (HT=55, QT=57) underwent ACLR. Patients were assessed pre- and post-operatively (6 weeks and 3, 6, 12 and 24 months) with a range of patient-reported outcome measures (PROMs), graft laxity (KT-1000), active knee flexion and extension range of motion (ROM), peak isokinetic knee extensor and flexor strength and a 6-hop performance battery. Limb Symmetry Indices (LSIs) were calculated for strength and hop measures. Secondary procedures, ACL re-tears and contralateral ACL tears were reported. Results:
No group differences (p>0.05) were observed in demographics, injury or surgery history. All PROMs and knee ROM measures significantly improved (p<0.0001) though, apart from the Anterior Cruciate Ligament Return to Sport after Injury (ACLR-RI) score which was significantly better (p<0.05) in the HT group at 3, 6 and 12 months, no other group differences (p>0.05) were observed. No group differences were observed in side-to-side laxity (p>0.407), while there was no significant change in laxity from 6 to 24 months (p>0.105). While the HT group demonstrated significantly greater (p<0.05) quadriceps strength LSIs at 6 and 12 months, the QT group demonstrated significantly greater (p<0.05) hamstring strength LSIs at 6, 12 and 24 months. The HT group demonstrated significantly greater (p<0.05) LSIs for the single horizontal (6 months), lateral (6 and 12 months) and medial (6 months) hop tests for distance. Up until 24-months, 1 patient (QT at 22 months) had suffered a re-tear, with 2 contralateral ACL tears (QT at 19 months, HT at 23 months). Secondary procedures included 9 in the HT group (MUA, notch debridement, meniscal repair) and 6 in the QT group (MUA, notch debridement, meniscal repair, tibial tubercle transfer, osteochondral autologous transplantation). Conclusions: The two autograft groups performed well for PROMs (apart from the ACL-RI), knee ROM and laxity. However, greater hamstring strength LSIs were observed for the QT cohort, with greater quadriceps strength (and hop test) LSIs in the HT cohort. Longer-term review will continue to evaluate RTS and later-stage re-injury between the two graft constructs.

Category: Knee - ACL Graft Choice

DOSTAR: Dual or Single Hamstring Tendon for ACL Reconstruction. A Randomised Control Trial.

Abstract ID# 22101
All Authors:
Adam Malcolm Lawless MB BCH BAO LRCP&SI AUSTRALIA
Michael James Grant MBChb, FRCS Tr & Orth, PGCMRMedEd, PG Dip SEM UNITED KINGDOM

Summary:
This study seeks to compare the outcomes between Single Tendon (ST) and Dual Tendon (DT) ACLR, given there is no prospective randomised controlled trial (RCT) in the literature comparing outcomes between these options.

Data:
Introduction: Hamstring autograft is the most common graft used worldwide for ACL reconstruction (ACLR). Hamstring harvest has been associated with reduced hamstring strength, donor site pain and muscle strains after return to sport. There is conjecture as to the importance of the gracilis tendon in contributing to pain, flexion strength and rotational stability. Traditional hamstring graft requires both tendons to be harvested to achieve a graft of sufficient length and diameter, but newer techniques allow for a shorter, broad single tendon graft. To date there has been no prospective randomised controlled trial evaluating outcomes after single or dual hamstring tendon ACLR. The aim of this study is to compare post-operative clinical outcomes between single (semitendinosus only) versus dual (semitendinosus and gracilis) hamstring tendon grafts. Methods: In this ongoing double blinded prospective randomised controlled trial (RCT) (registered as a clinical trial with the Australia New Zealand Clinical Trials Registry (ACTRN126200009279291)) patients were recruited and randomised a priori into a single tendon (ST) or a dual tendon (DT) group for ACLR. All anaesthetic and surgical techniques were uniform between the groups aside from graft technique and tibial fixation. Patients were evaluated pre-operatively and at 6-months post-ACLR using patient-reported outcome measures (PROMs) including the KDC, Lysholm and Modified Cincinnati knee scores, as well as a visual analog scale for pain frequency (VAS-F) and severity (VAS-S). At 6 months post-ACLR, the Graft Morbidity Score (GMS) was completed, while knee laxity (KT-1000), hop performance and peak isokinetic quadriceps and hamstrings strength were assessed. Results: Overall, 71 patients (ST = 34; DT = 37) were assessed at 6 months post-surgery on a per protocol analysis, with a further 13 patients excluded at time of surgery as their selected graft did not meet a minimum 8mm diameter. No significant group differences (P>0.05) were observed in demographics (age, sex, height and body mass) or surgical characteristics (concomitant meniscal repairs and meniscectomies). Graft diameters were significantly smaller in the ST group compared to the DT group (mean difference [MD], -0.67mm; 95% CI, -0.91 to -0.43; P < 0.001). A significantly lower GMS was reported in the ST group compared to the DT group (effect size [ES], 0.649; 95% CI, 2.4, 16.2; P = 0.01). No significant group difference were observed for other PROMs (P>0.05) or knee laxity (P=0.362). Conclusion ST (versus DT) harvest results in significantly less donor site morbidity and this is the first prospective RCT to determine this. There were no differences between ST and DT hamstring ACLR were observed in PROMs, knee laxity and hamstring strength. Younger female patients tend to have inadequate single tendon size to produce a graft of sufficient diameter, and alternative techniques should be considered. Further endpoints include radiological analysis, longer term donor site morbidity, revision rates and return to sport and will continue to be presented in the future.

Category: Knee - ACL Graft Choice

A Novel Practical Method To Predict Anterior Cruciate Ligament Hamstring Graft Size Using Pre-Operative MRI

Abstract ID# 21619
All Authors:
Zi Qiang Glen Liu MBBS, MMed(Ortho), MBA SINGAPORE
Matthew Song Peng Ng MBBS candidate SINGAPORE
Shawn Shao En Low MBBS candidate SINGAPORE
Brian Zhaojie Chin BMed, MD SINGAPORE
Fareed Husain Yusuf Kagda MBBS (Spore), FRCS (Glasg), FRCSEd (Ortho Surg), SINGAPORE

Abstracts Journal of ISAKOS 8 (2023) S45–S49