Introduction Previous biomechanical cadaveric studies have demonstrated residual laxity in knees that have undergone anterior cruciate ligament reconstruction (ACLr) with associated anterolateral complex (ALC) injury, assessed during ‘in vitro’ internal-external or anterior-posterior laxity. The role of the ALC has never been evaluated during simulated activities of daily living (ADL) such as cutting or pivoting motions. Thus, the purpose of this study was to examine the contributions of the ALC during ‘in vitro’ clinical laxity tests and simulated ADL movements Method Twelve intact cadaveric knees were mounted onto a joint motion simulator (AMTI Vivo). The ACL was transected and anatomic single-bundle ACLr was performed using a synthetic graft with an initial tension of 80 N at 30° of flexion angle, which was measured using a loadcell attached to the graft. Each knee was subjected to clinical laxity tests (Pivot-shift, Lachman, and anterior drawer), as well as simulated ADL, comprising cutting maneuvers and inside and outside pivoting. Tension was applied to the quadriceps and hamstring to simulate dynamic muscle force during ADL. ALC dissection was performed by releasing the tibial attachment of the anterolateral ligament from the lateral meniscus and the femoral attachment from the most posterior limit of the iliotibial band as far proximal as the distal Kaplan fiber attachment, which was left intact. All tests were applied in the following stages: ACLr, ACL-Cut, ACLr + ALC-Cut, and ACL-Cut + ACL-Cut. After cutting ALC, the measured kinematics of both ACLr and ACL-Cut conditions were fed back to the knee to determine the force contribution of the ACL based on the sequential resection and superposition technique. Results In the ACLr stage, resection of the ALC led to an increase in anterior translation and internal rotation of 2.3 mm and 4.5°, respectively, and by 2.7 mm and 3.9° in the ACL-Cut stage. During Lachman and anterior drawer tests, cutting the ALC caused an increase in tibial translation by 1.7 mm and 1.5 mm in the ACLr stage, versus 3.0 mm and 2.4 mm in the ACL-Cut stage, respectively. In both ACLr and ACL-Cut stages, statistically, significant differences were detected between the kinematics in intact and injured ACL. During the simulated cutting maneuver and inside and outside pivoting, dissection of the ALC resulted in an average increase in internal rotation by 2.3°, 2.1°, and 1.7° with the ACLr versus 2.8°, 1.5°, and 1.7° with the ACL-Cut, respectively. During pivot shift, Lachman and anterior drawer test, in the ACLr stage, the average anterior force contribution of the ACL was 34%, 7%, and 10% respectively, whereas it was 49%, 30%, and 29% in the ACL-Cut stage. Furthermore, the average anterior force contribution of the ACL was 16%, 15%, and 9% in ACLr, and 31%, 44%, and 49% in ACL-Cut, respectively, for the cutting maneuver, inside pivoting, and outside pivoting. Conclusion An ‘in vitro’ combined ACLr + ALC knee injury results in a significant increase of AP translation compared to an ACL injury alone. ALCr alone failed to restore knee kinematics during simulated ADL when a concomitant ALC injury was performed. This study provides further evidence that ALC should be addressed when treating ACL-injured knees with preoperative high-grade rotatory laxity.

Category: Knee - Lateral Extraarticular Tenodesis

Isolated Lateral Extra-articular Tenodesis (LEAT) for Chronic Rotational Instability following Primary Anterior Cruciate Ligament (ACL) Reconstruction has Low Surgical Morbidity and Improves Knee Stability

Abstract ID# 22989

All Authors: Ashley Iain Simpson BA(Hons), MBBS, MSc, MA(Cantab), FRCS(Tr&Orth) UNITED KINGDOM Cameron Muirhead MD AUSTRALIA Peter D’Alessandro MBBS Hons. (UWA) FRACS FAOrthA AUSTRALIA

Summary: The isolated LEAT procedure appears appropriate and successful in addressing ongoing subjective and objective rotational instability in the ACL reconstructed knee.

Data: Background Augmentation of the lateral structures of the knee using a Lateral Extra-Articular Tenodesis (LEAT) in combination with ACL reconstruction is thought to improve rotational instability, though the exact indications for LEAT remain controversial. We propose that the LEAT procedure can also be used in isolation in the ACL reconstructed knee with an intact graft but mild to moderate chronic subjective and objective rotational instability. This procedure ideally provides sufficient adjunctive knee stability while avoiding the higher surgical morbidity, complication rate and prolonged post-operative rehabilitation of full revision ACL reconstruction. Methods A prospective consecutive case series of patients undergoing isolated LEAT by a single surgeon for chronic rotational instability following previous ACL reconstruction were followed from 2016 to 2022. Inclusion criteria consisted of an ACL reconstruction with appropriately placed bone tunnels and intact graft on MRI, with subjective knee instability and positive pivot shift on clinical examination. Patient demographics, pre-operative imaging, pre- and post-operative patient-reported outcome measures (PROMs) were assessed. Results Twelve patients were identified. Mean age was 29.3 years (Range: 20-41 years) and 50% were male. A modified MacIntosh LEAT was used for all patients. The mean time from ACL reconstruction to the LEAT procedure was 68 months. Mean follow up time was 15.5 months (Range: 8-59 months). In all patients the pivot shift was obliterated post-LEAT procedure. Four patients underwent concomitant meniscal repair (33%) and three patients underwent meniscal debridement (25%) at the same operation. No complications were reported but one patient is awaiting removal of interference screw for superficial irritation. Significant improvements were demonstrated in PROMs including Sane, Tegner, ACL-RSI and EQ-5D scores. Conclusions The isolated LEAT procedure appears appropriate and successful in addressing ongoing subjective and objective rotational instability in the ACL reconstructed knee with intact graft and appropriate tunnel positioning and is a useful option in this cohort of patients. It offers a low surgical morbidity and complication rate in comparison to revision ACL reconstruction and provided good patient-reported outcomes across a series of measures. This study is the largest of its kind in the available published literature.

Category: Knee - Lateral Extraarticular Tenodesis

Clinical Outcomes of Combined ACL & Anterolateral Ligament Reconstruction Versus Isolated ACL Reconstruction: A Matched-Pair Analysis of 2018 Patients

Abstract ID# 21582

All Authors: Adnaa Salihna Prof., MD, FRCS UNITED STATES Charles Pioger MD FRANCE Lampros Gousoopoulos MD, FRCS FRANCE Graeme P. Hopper MBChB, MSc, MRCSed, MFSTed, MD, FRCSGlasc (Tr&Orth) UNITED KINGDOM João Pedro Campos PORTUGAL Corentin Philippe MD FRANCE Thais Dutra Vieira MD FRANCE Abdo Helou MD FRANCE Bertrand Sonnery-Cottet MD, PhD FRANCE

Summary: Risk of ACL graft rupture is 3-fold greater with isolated ‘gold standard’ BTB grafts when compared to ACL+ALLR with hamstring autografts.

Data: Background: The aims of this study were to compare the clinical outcomes following “gold standard” ACL reconstruction (ACLR) with a bone patellar-tendon-bone (BPTB) autograft versus ACLR combined with an anterolateral ligament reconstruction (ALLR) using hamstring tendon autografts (HT), in a large series of propensity matched patients. The hypothesis was that combined reconstructions would confer better graft rupture rates and lower non-graft rupture related re-operation rates than isolated ACLR with BPTB Methods: A retrospective analysis of prospectively collected data was performed. Patients undergoing combined ACLR + ALLR using HT between 2003 and 2019 were propensity matched in a 1:1 ratio to patients undergoing isolated ACLR using BPTB. At the end of the study period rates of graft rupture, contralateral knee injury and any other re-operations or complications that occurred were identified by database interrogation, review of medical records and standardized telephone interview. It was anticipated that there would be significant differences in the duration of follow-up between the groups due to a larger proportion of patients undergoing combined reconstructions toward the latter part of the study period. For that reason, statistical techniques that are unaffected by any differences in durations of follow-up between groups were used to evaluate graft survivorship, re-operation free survivorship and the significance of potentially important risk factors. Specifically, Kaplan Meier survivorship analyses and Cox-proportional hazards models were used because both evaluate time to event data and are independent of the overall duration of follow up. Results: A total of 2018 patients (1009 matched pairs) were included. The mean duration of follow up was 101.3. Kaplan Meier Analysis demonstrated a significantly better graft survivorship in the ACLR + ALLR group when compared to the BPTB group at every time point assessed. The Cox model demonstrated that patients in the BPTB group were > 3-